

The Role of pH in Maillard-Type Reactions

Chair J. de Clerck Symposium XI Louvain, September 8, 2004

Imre Blank

Nestlé Research Center, Lausanne, Switzerland

Outline of the presentation

Basic principles of pH/Maillard

- pH versus reactivity (nucleophilicity)
- pH versus buffer
- pH to control the Maillard reaction

Examples from flavour research

- O-heterocycles caramel-like/sweet
- *N*-heterocycles raosty/sweet
- S-heterocycles roasty/savoury

Loss of Glc under boiling conditions:

- rapid loss at pH 10-12
- high loss at pH 8-12

Loss of Lys under boiling conditions:

- slower decrease at pH 10-12
- small loss at pH 4-9

pH decrease and browning as affected by the type of sugar

(van Boekel et al., 2000)

Colour and flavour formation via Maillard reactions depend very much on the pH

Major reaction pathways as affected by the pH

2004-09-08 NRC/FCI - IBk/Louvain 8

Major steps of the early stage of the Maillard reaction

Formation of acetic acid (Phosphate buffer, 0.2 mol/L, 120°C)

2004-09-08 NRC/FCI - IBk/Louvain

Formation of some C_2 and C_3 degradation products by the Maillard reaction

Role of buffer on pH control and reactivity in the Maillard reaction

(Rizzi, 2004)

Conclusion:

Intramolecular proton abstraction with $XO_2^ \rightarrow$ more efficient, catalytic effect

Intermolecular proton abstraction with OH-

Mechanism:

- Nucleophilic addition
- Proton abstraction from α -position
- Enolisation: A, sugar isomerisation
- Dehydration: B, 3-deoxyosone formatio

Formation of the Amadori compound in the Glc/Gly system

(D-glucose 0.1 M and glycine 0.1 M, H_2O or phosphate buffer 0.1 M, T = 90°C)

● pH 5, ▲ pH 6; ■ pH 7

(Kervella et al., 2002)

Summary: pH effects on reactions occurring in the Maillard cascade

pH changes depend on:

- Formation of acid/base : HCOOH, HOAc, glycolic acid
- Consumption of acid/base
- Buffering capacity of Maillard/food system

Typical reactions in the 'Maillard reaction':

- Amino/carbonyl reactions
- Aldol/retro-aldol reactions
- Enolisation and elimination
- Radical reactions
- Oxidation and reduction

- : basicity of α -NH₂, pK_a
- : 'alkaline' conditions
- : 'alkaline/acidic' conditions

: aminoketones \rightarrow pyrazines

: 'alkaline conditions

Impact aroma compounds with caramel/sweet character: O-Heterocycles

он (61000)

(Wild, 1988)

Formation of Furaneol (1 M aq. solution, no buffer, pH= const., T= 90°C)

Formation of furaneol from Amadori compounds *via* acetylformoine

(Blank et al., 1997)

Degradation of pentose sugars via the Maillard reaction

Formation of furylethylether indicating aging flavour of beer

FEE formation is correlated with

- high EtOH content,
- darker colour,
- lower pH.

FEE (Flavour threshold: 6 μ g/L beer)

Nestlé Research Cente

(Vanderhaegen et al., 2003, 2004)

Impact aroma compounds with roasty/sweet character: *N*-Heterocycles

(Threshold values in ng/L air)

Formation of impact odorants from proline/sugar mixtures at pH 7

Reaction conditions:

Pro (4 mmol) + 'sugar' (2 or 0.1 mmol) Phosphate buffer (pH 7.0, 0.1 mol/L) Reflux, 2 h

Nestlé Research Cente

(Schieberle et al., 1995, 1998, 2000)

Increased yields of roasty odorants: Reaction of secondary degradation products

(Schieberle et al., 1995, 1998)

Increased yields of roasty odorants from key intermediates: ATHP from HOP

(Schieberle et al., 1995, 1998)

Impact aroma compounds with roasty / savoury character: S-containing odorants

Cysteine and pentose sugars are important precursors for thiols

2004-09-08 26

Formation of 2-furfurylthiol (FFT) from 2-furfural in the presence of H₂S

Formation of 2-furfurylthiol (FFT) from sugar fragments and H₂S

Reaction conditions:

Precursors (each 1 mmol)

Phosphate buffer (50 mL, 0.5 mol/L)

Autoclave (145°, 20 min)

Mechanism:

Aldol-type condensation

Cyclisation, dehydration

Formation of S-containing odorants from alcohols under acidic conditions

Reaction conditions:

Alcohol, acetate buffer, pH 4.0, 100 °C

Mechanism:

Acid-catalysed alkylation of amino acid S-atom *via* cationic intermediates.

Unsaturated alcohols form electrophilic species in acidic media reacting with ambient nucleophilic sites.

(R, R': H, Me)

Sunstruck off-flavour in beer

Light-induced radical reaction o isohumulone and an SH-source (riboflavin-photosensitized SH reaction

Formation of methional and DMTS during accelerated aging of beer

Reaction conditions:

Storage for 5 days at 40 °C

Mechanism:

Strecker degradation of methionine to form methional.

Formation of sulfite/aldehyde adducts trapping methional.

→ Higher DMTS amounts at lower pH via disproportionation of DMDS

(Gijs et al, 2002)

The role of pH in the Maillard reaction: Conclusions

- Many steps in the Maillard cascade are affected by the pH
- pH effect can be different, favouring reactions under acidic or alkaline conditions
- Buffer may have various tasks: i.e. constant pH (reaction control), catalytic effect (increasing reaction rate)
- Neutral pH (6-7) is often the best compromise for flavour formation
- Final amounts depend on formation & degradation, both of them are influenced by pH and may lead to off-notes

Back-up slides

Formation of sotolon from 4-hydroxy-L-isoleucine (HIL) and its lactone

(Blank et al., 1996)

Lactonisation of 4-hydroxy-L-isoleucine (HIL) is favoured under acidic conditions

Reaction conditions : 100°C, 1 h, phosphate buffer Analytical technique : FAB-MS

(Blank et al., 1997)

NESTLE RESEARCH CENTER

PAGE 10 Nestlé Research Cente

HIL-Lactone

Formation of sotolon from hydroxyisoleucine (HIL) and its lactone: Influence of the pH

Nestlé Research Cente

 \rightarrow Optimum: pH 5-6

Sotolon formed from 4-hydroxy-L-isoleucine by thermally induced oxidative deamination

(Blank et al., 1997)

Formation of secondary degradation products: 1-Pyrroline and methylglyoxal

Retro-aldol reaction

Strecker reaction

H₂O

