Vol. 22, Special Issue

Czech |. Food Sci.

Flavour and Vinylogous Compounds Generated
by Maillard-Type Reactions

I. BLANK*, T. DAVIDEK, Ph. POLLIEN and S. DEVAUD

Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland,

*E-mail: imre.blank@rdls.nestle.com

Abstract: The formation of vinylogous compounds and Strecker aldehydes from amino acids was studied in binary

dry mixtures of fructose and valine, asparagine or phenylalanine at 180°C. Volatile compounds were monitored

by GC-MS and proton transfer reaction mass spectrometry. Acrylamide was the major vinylogous compound

followed by styrene and 2-methylpropene. On the contrary, methylpropanal was the most abundant odour-ac-

tive Strecker aldehyde followed by phenylacetaldehyde, whereas 3-oxopropanamide could not unequivocally be

identified. These data suggest that Strecker aldehydes and vinylogous compounds are generated through different

pathways in the Maillard reaction.
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INTRODUCTION

The recent discovery of relatively high amounts
of acrylamide in carbohydrate-rich foods obtained
by thermal processing [1, 2] has led to numerous
studies indicating Maillard-type reactions as a major
reaction pathway, in particular in the presence of
asparagine, which directly provides the backbone
of acrylamide [3-6]. Similarly, other vinylogous
compounds have been identified as reaction prod-
ucts of specific amino acids, such as acrylic acid
[7], but-3-enamide [7, 8], and styrene [9] generated
from aspartic acid, glutamine, and phenylalanine,
respectively. The mechanism explaining acrylamide
formation from asparagine can basically be applied
to other amino acids, as suggested in our recent
paper [9]. It is based on a Strecker-type degrada-
tion of the Schiff base leading to azomethine ylide
intermediates followed by a 3-elimination reaction
of the decarboxylated Amadori compound to afford
the vinylogous compound [9]. Unfortunately, the
large majority of studies dealing with acrylamide
and other processing contaminants do not consider
flavour or colour formation, despite the fact that
they are also formed by Maillard-type reactions
implying similar reaction pathways [10]. Therefore,

the objective of this study was to simultaneously
monitor the formation of flavour compounds and
vinylogous-type processing contaminants.

EXPERIMENTAL

Materials. L-Valine (Val), L-asparagine (Asn),
L-phenylalanine (Phe), p-fructose (Fru), 2-methyl-
propene, acrylamide, styrene, a,f,3-’H,-styrene
(isotopic purity 98%), methylpropanal, and phe-
nylacetaldehyde were from Fluka/Aldrich (Buchs,
Switzerland).

Analytical methods. Gas chromatography/Mass
Spectrometry (GC/MS) [9] — This was performed
using a GC 6890A coupled to an MSD 5973N
(both Agilent) equipped with a DB-Wax capillary
column (J&W Scientific): 60 m x 0.25 mm, film
thickness 0.25 um. Helium was used as a carrier
gas (2.4 ml/min). Samples (1 ul) were introduced
via splitless injection at 250°C. The oven tempera-
ture program was: 35°C (2 min), 6°C/min to 240°C
(10 min). The electron impact (EI) mass spectra
were generated at 70 eV. The temperature of the
ion source was 280°C. Quantification of styrene
by isotope dilution assay was performed in the
EI-MS mode by measuring the molecular ions
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of analyte and labelled internal standard at m/z
104 and 107, respectively.

Proton Transfer Reaction Mass Spectrometry (PTR-MS)
[11] — Samples for on-line measurement of head-
space volatiles obtained in pyrolysis experiments
were analysed by PTR-MS. The precursors (each
0.35 mol) were ground, mixed, and heated from
room temperature to 190°C at a 5°C/min heating
rate. Acrylamide (m/z 72), styrene (m/z 105), 2-me-
thylpropene (m/z 57), and 3-oxopropanamide (m/z
88), phenylacetaldehyde (m/z 121), methylpropanal
(m/z 73) were monitored in the scan mode (m/z
21-200, 0.2 s/mass).

Pyrolysis procedure. The chemicals of interest
were heated in a temperature controlled heating
module (Brouwer) at 180°C in tightly closed 6 ml
Pyrex vacuum hydrolysis tubes (16 cm x 0.9 mm)
that were immersed in silicone oil. After a de-
fined heating period (e.g. 5 min), the tubes were
cooled on ice. For quantification of styrene, fructose
(0.2 mmol) and phenylalanine (0.2 mmol) were
placed in 20 ml crimp cap vial (Chromacol) and
heated in a silicone bath at 180°C for 15 min. After
cooling down, the reaction sample was dissolved
in water (2 ml), spiked with a,3,3-’H,-styrene
(5.12 pg in MeOH) and extracted with diethylether
(2 ml). The organic phase was dried over sodium
sulphate and analysed by GC-MS. The experiments
were performed in duplicate.

RESULTS AND DISCUSSION
Vinylogous compounds such as acrylamide have

recently been claimed as food processing contami-
nants and associated with safety risks [1]. This is

Asparagine

Valine

due to the fact that they can lead to highly reactive
epoxides (i.e. glycidamide), which may for exam-
ple react with nucleophiles forming haemoglobin
adducts [2]. In analogy to acrylamide 1, valine and
phenylalanine may lead to 2-methylpropene 3 and
styrene 5, respectively (Figure 1). They are formed
via the Maillard reaction under low-moisture condi-
tions by a Strecker-type degradation of the inter-
mediary Schiff base leading to a decarboxylated
Amadori compound that upon p-elimination may
release the vinylogous compounds [5, 6, 9]. Simi-
lar reactions can also lead to Strecker aldehydes,
i.e. 3-oxopropanamide 2, methylpropanal 4, and
phenylacetaldehyde 6 (Figure 1), some of which
are odour-active contributing to the overall flavour
of food products [10, 12].

PTR-MS was used as a suitable tool to monitor
the formation of the compounds 1-6 due to their
volatility. As shown in Figure 2A, acrylamide 1
(m/z 72) was the major vinylogous compound
formed, followed by 2-methylpropene 3 (m/z 57)
and styrene 5 (m/z 105). However, these data are
only indicative because the release of compounds
into the headspace depends on their volatility.
For example, acrylamide 1 is very polar having
a high boiling point of 125°C (25 mm), whereas
2-methylpropene 3 is very apolar and volatile
(b.p. —6.9°C). Styrene 5 is also apolar having a
higher boiling point (145°C) due to m-stacking
interactions. Interestingly, 1 and 3 show one major
peak corresponding to 150-160°C while styrene 5
is basically formed in two portions, i.e. at 150°C
and under harsher pyrolytic conditions at 190°C.
As the trace at m/z 57 is not well representative for
3, it may correspond to several compounds. On the
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Figure 1. Formation of vinylogous compounds (1, 3, 5) and Strecker aldehydes (2, 4, 6) by Maillard-type reactions

(see text for explanation)
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Figure 2. Formation of (A) vinylogous compounds: acrylamide 1, 2-methylpropene 3, styrene 5 and (B) Strecker
aldehydes: 3-oxopropanamide 2, methylpropanal 4, phenylacetaldehyde 6

contrary, m/z 72 and m/z 105 are characteristic for
acrylamide 1 and styrene 5, respectively. Styrene 5
has previously been reported as reaction product
of dry and aqueous sugar/Phe systems [13, 14].
The formation of the Strecker aldehydes shows
a different behaviour (Figure 2B). The malt-like
smelling methylpropanal 4 was the most abundant
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compound followed by the honey-like smelling
phenylacetaldehyde 6, both generated at about
150°C. Surprisingly, the Strecker aldehyde of as-
paragine (2) was hardly detectable, indicating that
this amino acid preferably forms the vinylogous
compound. On the contrary, valine favours the
generation the Strecker aldehyde. Phenylalanine
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Figure 3. Formation of styrene 5 and phenylacetaldehyde 6 from Fru/Phe (TIC: total ion current)
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seems to form both chemical entities under the
same conditions. Again, the PTR-MS traces depend
on the boiling point of the Strecker aldehydes, i.e.
63°C and 195°C for 4 and 6, respectively.

The formation of styrene 5 and phenylacetal-
dehyde 6 from Fru/Phe was studied by GC-MS.
Styrene 5 was quantified using the deuterated
analogue (d,-styrene): about 200-300 umol/mol
Phe was found after heating at 180°C for 15 min.
As indicated in Figure 3, the ratio of Strecker al-
dehyde (6) to vinylogous compound (5) was about
2.5:1 based on the peak area.

CONCLUSIONS

Strecker aldehydes and vinylogous compounds
show different formation patterns, suggesting that
these molecules are generated by different reac-
tion pathways. Therefore, it should be possible to
favour the formation of flavour-active components
while controlling the amounts of vinylogous com-
pounds. However, more work is required includ-
ing strong collaboration between academia and
industry to develop food products with desirable
flavour notes and reduced amounts of processing
contaminants.
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