COST 927 - IMARS Workshop, May 24-26, 2006, Naples

Formation of Furan

Imre Blank, Anita Limacher, Julia Märk, Josef Kerler

Nestlé Product Technology Center 1350 Orbe, Switzerland

In May 2004, FDA published a survey showing that food undergoing heat treatment can contain Furan

EFSA/IARC/FDA assessment:

- Furan is carcinogenic to rats and mice
- Furan-induced carcinogenicity is probably due to a genotoxic mechanism
- International Agency for Research on Cancer (IARC): Possibly carcinogenic to humans (2B)
- Up to ~200 μg/kg found in food (canned, jarred)
 (FDA, June 7, 2004; http://www.cfsan.fda.gov/~dms/furandat.html)
- A reliable risk assessment would need further data on both toxicity and exposure
- FDA has issued a dietary message advising consumers to continue to eat a balanced diet

(Perez Locas & Yaylayan, J. Agric. Food Chem. 2004, 52, 6830)

Any consideration of practices to reduce Furan needs to include the impact on

- Formation of other undesired components (e.g. Acrylamide)
- Change of product quality (flavour, texture, colour, nutritional value)

Study furan formation in model systems

- Roasting and sterilisation conditions
- Focus on Ascorbic acid → Furan

Mechanistic insight

- Labelled ascorbic acid
- CAMOLA

Reduce furan formation

- Mitigation study
- Binary mixtures

Headspace techniques

- PTR-MS (1)
- SPME GC-MS (2)

Reaction conditions

 $30 \rightarrow 220^{\circ}\text{C (5°C/min)}$ (1)

200°C (10 min) (2)

121°C (25 min) (2)

Thermal decomposition of ascorbic acid

Time-resolved headspace

release curves (PTR-MS)

Ascorbic acid is the major furan precursor under roasting conditions

(Märk et al., J. Agric. Food Chem. 2006, 54, 2786)

Ascorbic acid → Furan (roasting conditions)

Furan mitigation: $(1) + N_2$ purge (instead of air)

(2) + BHT

(3) + Na-Sulfite

(Märk et al., J. Agric. Food Chem. 2006, 54, 2786)

Precursor mixtures (roasting conditions)

→ Drastic reduction of furan in the presence of food constituents, even if they are potential precursors of furan (competing reactions)

Ascorbic acid → Furan

Analysis by SPME-GC-MS Using d₄-furan as internal standard (Goldmann et al., *Analyst* **2005**, *130*, 878)

Labelling studies: Ascorbic acid → Furan

	HO- ¹³ C ^{''}	Model	M	M+1	M+2	M+3	M+4
	13C-OH	system	(68)	(69)	(70)	(71)	(72)
L-[1- ¹³ C]-ASA	но	(Dry)	100 %	0 %	0 %	0 %	0 %
L-[<mark>2</mark> - ¹³ C]-ASA	но—	$\left\{ \text{aq. pH 4} \right\}$	100 %	0 %	0 %	0 %	0 %
L-[6- ¹³ C]-ASA	H ¹³ C-OH H	aq. pH 7	0 %	100 %	0 %	0 %	0 %
L-ASA + D-[U-13	³ C ₆]-Glc (1:1)	Dry	73 %	0 %	0 %	0 %	27 %
L-ASA + D-[U- ¹³	³ C ₆]-Glc (1:1)	aq. pH 7	84 %	0 %	0 %	0 %	16 %
L-ASA + D-[U- ¹³	³ C ₆]-Glc (1:1)	aq. pH 4	99 %	0 %	0 %	0 %	1 %

- → C-1 and C-2 not incorporated into Furan (composed of C-3 to C-6)
- → No recombination of ascorbic acid fragments
- → Glucose contributes to the total Furan amount (dry, aq. pH 7)

Formation mechanism: Ascorbic acid → Furan

Madalayatam	Ratio			
Model system	CO ₂	/	¹³ CO ₂	
L-[1- ¹³ C]-Ascorbic acid	1	:	1.79	
L-[2- ¹³ C]-Ascorbic acid	1	:	0.25	
L-[6- ¹³ C]-Ascorbic acid	1	:	0.16	

HO—13C—OH HO—OH HO—HO—CH	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
--------------------------	---

	HCOOH (M)	HCOOH (M+1)
	(m/z = 46)	(m/z = 47)
L-[1- ¹³ C]-ASA	80 %	20 %
L-[2- ¹³ C]-ASA	68 %	32 %
L-[6- ¹³ C]-ASA	84 %	16 %

Furan formation in three steps:

- 1. Decarboxylation
- 2. Dicarbonyl cleavage
- 3. Cyclization/dehydration

Various pathways exist in the degradation of ascorbic acid

Summary

- Ascorbic acid and PUFAs are the major sources of furan in dry systems → hydrophilic and lipophilic precursors
- Furan formation is much reduced in the presence of food constituents → competing pathways
- Significant reduction of furan amounts observed in aq.
 Vit. C systems (pH 4 > pH 7) → competing pathways
- Furan formation from Vit. C occurs in three steps:
 - Decarboxylation (- CO_2) = C1
 - Loss of formic acid (- HCOOH) = C2
 - Cyclization & dehydration to furan = C3-6

Outlook

- Better understanding of formation pathways
 - dry, aqueous, pH, heating conditions (t/T), kinetics
 - various precursor systems, their relative impact
 - labelling studies, CAMOLA
- Further investigation / mitigation in food systems
 - more realistic food models
 - validation in real food
- Revisit handling of micronutrients in food processing,
 e.g. vitamins (C, E), PUFAs, amino acids, etc.
- Health risks to humans

Acknowldegments

C. Lindinger NRC, Lausanne

Ph. Pollien NRC, Lausanne

C. Meyer NRC, Lausanne

R. Stadler PTC Orbe

B. Conde-Petit ETH, Zurich

T. Märk Univ. Innsbruck

PTR-MS

PTR-MS

SmartNose